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THE CSR 3.0 GLOBAL OCEAN TIDE MODEL:

DIURNAL AND SEMI-DIURNAL OCEAN TIDES

FROM TOPEX/POSEIDON ALTIMETRY

1. INTRODUCTION

The successful launch and operation of TOPEX/POSEIDON (T/P), a joint

NASA/ESA radar altimeter mission, has proven to be a boon for a wide range of

oceanography applications. High accuracy measurements of the height of the T/P

satellite over the instantaneous ocean surface, coupled with highly accurate determina-

tion of the geocentric distance to the satellite using sophisticated orbit determination

techniques and models, has led to several advances in the modeling of features and

phenomena over the global oceans. The use of this data for mapping of the Mean Sea

Level, Dynamic Sea Surface Topography, Ocean Tides and other oceanographic

phenomena is well documented (JGR Vol. 90 (C12), 1994).

The models for global ocean tides have seen significant improvements, beginning

from the models of Schwiderski (1983) which used long spans of globally distributed

tide gauge data; through the Cartwright and Ray (1990) model (C&R91 Model), which

used three years of altimeter data from Geosat; and finally to several models derived

from the T/P altimeter data (e.g. Desai and Wahr (D&W95) Model (1995)).

In this report, we provide an outline of the theoretical basis, the data processing

and the error assessment results from the development of the ocean tide Model CSR

3.0. This model was estimated from T/P altimeter normal points over a span of 2.4

years (first 89 cycles), using the response method developed by Munk and Cartwright

(1966). The reference model adopted was the FES94.1 (Le Provost, 1994), and correc-

tions to the ocean tide orthoweights in the Diurnal and Semi-diurnal band, among

other parameters, were estimated from T/P altimeter residuals with respect to the refer-

ence model. As is evident, there are several principal topics of discussion in this

report, namely
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a) the mathematical model for the ocean tide itself;

b) the reference model FES 94.1, residuals with respect to which were used to esti-

mate the model CSR 3.0;

c) the pre-processing and corrections applied to the T/P satellite altimeter measure-

ments;

d) parametrization of the corrections to the reference ocean tides;

e) the least squares problem formulation, solution and post-processing; and finally

f) the error analysis and accuracy assessments of the final model.

Each of these topics are discussed in succession in the following sections of this

report.
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2. THEORETICAL MODELS

Since a satellite altimeter measures the height of the instantaneous ocean surface

relative to a reference ellipsoid, we get a direct measurement of the geocentric or the

so-called altimetric tide, denoted at a given latitude φ and longitude λ at any epoch t

by ζa ( φ , λ ; t ). This altimetric tide is related to the true, or bottom-relative ocean tide

ζ ( φ , λ ; t ) by

ζo ( φ , λ ; t ) = ζa ( φ , λ ; t ) − ζb ( φ , λ ; t ) = ζ ( φ , λ ; t ) + ζl ( φ , λ ; t ) (1)

where ζb is solid or the body-tide, and ζl is the load tide. The difference between the

altimetric and the load tides will be called the elastic ocean tide (Callahan 1993),

denoted by ζo . While the T/P altimeter makes measurements of the altimetric tide, we

choose to treat ζo as the observable quantity for two reasons. Firstly, the response of

the solid Earth to the tidal potential is, except for the Free Core Nutation (FCN)

effects, well understood and accurately modeled at the Diurnal and Semi-diurnal fre-

quencies, so that the body tides may be treated as a correction applied to the altimeter

data. Secondly, the spectral nature of ocean tides, including their loading effects, are

quite distinct and more complicated than the nature of the solid tides. For these rea-

sons, we chose to club together the bottom relative ocean tide and the ocean load tide

into the elastic ocean tide.

The loading deformation due to ocean tides is used in two places in this work.

Firstly, the load tides are required to convert the bottom relative reference FES94.1

ocean tide model to the reference elastic ocean tide. Secondly, once the elastic ocean

tide is estimated from the T/P data, the final model must be converted to the bottom-

relative tide using ocean loads. It is important to emphasize that the two load models

were distinct, with the first or the Reference Load Tide model based upon a previous

T/P ocean tide model CSR 2.0 (Eanes and Bettadpur, 1994), and the latter computed

from a self-consistent analysis of the model CSR 3.0 itself.

The following theory is formulated for the models of the bottom relative tide ζ,

although it is pointed out that the theory is equally applicable to either the bottom

relative tide ζ or to the elastic ocean tide ζo . Such a formulation does not take into

account the possible resonant behavior in the load tides at the FCN frequency (Wahr

and Sasao, 1981).
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2.1. The Response Method

The tidal response method, first applied to the analysis of tide gauge data in

Munk and Cartwright (1966), is one of the more popular techniques for empirical

modeling of ocean tides. The mathematical framework for this method, using the so-

called orthoweights, was set out in great detail in Groves and Reynolds (1975). This

method was successfully used to develop the C&R91 ocean tide model from Geosat

altimeter data, as also the more recent ocean tide models from T/P altimeter data (e.g.

Eanes, 1994; Eanes and Bettadpur, 1994; Desai and Wahr, 1995). Our mathematical

formulation mirrors that of Groves and Reynolds (1975), Cartwright and Ray (1990),

and of Desai and Wahr (1995), so that the details need not be repeated here.

In the response formalism, as set out by Munk and Cartwright (1966), the ocean

tide height at each geographical location is expressed as a discrete convolution of the

tide generating potential with suitable weights in the time domain. The weights at

each time lag are chosen to minimize the error in prediction of tide height at a given

location, so that the chosen weights become functions of only the location and time

lag; which, along with the tide generating potential, completely determine the tide

height at that location. If the tide generating potential is decomposed into its spherical

harmonic spatial distribution modulated by time dependent variations in the Long

Period, Diurnal and Semi-diurnal species, the tide height then becomes a discrete time

convolution between the purely time varying part of the tide generating potential and

the spherical harmonic components of the weights. These latter weights are called the

Tidal Admittances, as they are also the global frequency response of the ocean tide

height to the purely time dependent component of the tidal forcing. The modeling of

the tidal admittances also imposes the so-called "credo of smoothness" on the ocean

response as a function of frequency over a selected frequency range. From discrete

Fourier transforms, it follows that the frequency range is determined by the time lag

interval, and the structure of the admittances over this range is determined by the

number of time lag steps imposed on the model. For example, for a fixed time lag

interval or bandwidth, using no lag intervals implies a constant admittance over the

applicable frequency range; using one lag interval implies modeling the admittance as

a sinusoidal function of frequency with one complete cycle over the selected

bandwidth; and so on. Clearly, greater the number of selected time lags, weaker is the

imposition of the "credo of smoothness" over the selected bandwidth.
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Groves and Reynolds (1975) proposed a modification to this basic methodology

by introducing the so-called orthotides. In this approach, the tides at each location

were written as a weighted sum of orthotides, where the weights were again deter-

mined to minimize the prediction error at that location. The orthotides, on the other

hand, are linear combinations of the time dependent part of the tide generating poten-

tial such that their time convolution over a theoretically infinite time interval is zero

for distinct frequencies. The "credo of smoothness" is imposed by constructing the

orthotides with successively greater number of lags in the linear combinations, so that

the orthotides of the lowest orders are the smoothest over the selected bandwidth. The

coefficients of such linear combinations, also called the Orthotide Coefficients, are in

practice, numerically determined by convolving a large number of tidal harmonics over

a suitably large time interval. The weights for the orthotides, as before, remain a

function of the geographical location.

The choice of the bandwidth over which the response is modeled depends on the

value of the time lag in the convolution. Munk and Cartwright (1966) suggested an

interval of 48 hrs, with an implied bandwidth of 0.5 cyc/day. Most of the important

Diurnal tides lie within frequencies of 0.8 and 1.1 cyc/day, and the Semi-diurnal tides

within 1.75 and 2.05 cyc/day, a bandwidth of 0.3 cyc/day. As a compromise between

minimizing the aliasing from tidal harmonics outside this bandwidth, and in imposing

the "credo of smoothness" over a sufficiently wide frequency range, the value of 48

hrs was chosen for the time lag, a choice which we use throughout in the succeeding

discussion.

2.2. The General Response Model

Following this outline of the basic theory, the model for the ocean tide height can

be developed as follows. Let the astronomical tide generating potential of degree two

be written as (Cartwright and Tayler, 1971)

V ( φ , λ ; t ) = g
m = 0
Σ
2

c 2
m * ( t ) W 2

m ( φ , λ ) (2a)

where,

c 2
m ( t ) ≡ a 2

m ( t ) + i b 2
m ( t ) =

k
Σ Hk e− i (Θk + χk ) (2b)
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and W 2
m are the surface spherical harmonics of degree two, as defined in Eqs. 10 and

11 in Cartwright and Tayler (1971). In these expressions, Hk denotes the Cartwright

and Tayler amplitudes, χk denotes the Doodson-Warburg phase factor (McCarthy,

1992), and Θk denotes tidal argument for the harmonic constituent k . The summation

over the index k is carried out for all the harmonics arising from each order m of the

tide generating potential. Each of the tidal arguments can be written as

Θk (t ) = k 1 τ + ( k 2 − 5 ) s + ( k 3 − 5 ) h + ( k 4 − 5 ) p + ( k 5 − 5 ) N ′ + ( k 6 − 5 ) ps(2c)

where k 1 is equal to m in Eq. 2a, and where the astronomical arguments have the

usual meaning as defined in (McCarthy, 1992).

In the expression for the tidal potential, the degree and order are explicitly indi-

cated by the subscript 2 and the superscript m . However, there is little possibility of

confusion if both the subscript and the superscript are dropped from the future expres-

sions, with the understanding that each such expression applies separately for each

order m , or equivalently, for each tidal species.

If n denotes the "order" of the orthotide (Groves and Reynolds, 1975), and if un

and vn denote the weights for that orthotide, (which will be determined from the

observation data at each geographic location), then the tide height at any point can be

written as

ζ ( t ) =
n : even
Σ
∞

[ un Pn ( t ) + vn Qn ( t ) ] (3a)

where the orthotides Pn and Qn are written as

Pn =
s = 0
Σ
in

Un ,s as
+ ( t ) + Vn ,s bs

− ( t ) (3b)

Qn =
s = 0
Σ
in

Un ,s bs
+ ( t ) − Vn ,s as

− ( t ) (3c)

and where

as
± ( t ) = a ( t + s ∆ t ) ± a ( t − s ∆ t ) (3d)

bs
± ( t ) = b ( t + s ∆ t ) ± b ( t − s ∆ t ) (3e)

In the sequel, we will refer to the orthotide weights ui and vi as the orthoweights of

the tide for a particular species. In these expression, ∆ t is the aforementioned time
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lag for the convolution. The constants Un ,s and Vn ,s are the Orthotide Coefficients of

order n and lag s , and are tabulated to a high order in Table 2 in Groves and Rey-

nolds (1975).

The reduction in the number of non-zero orthotide coefficients in the Eqs. 3 fol-

lows from the imposition of symmetries between the even and odd order orthotides

and between terms of positive and negative lag, as discussed in Desai and Wahr

(1995). The tide model thus requires only orthotides of even orders, each of which

have lags determined by the index range

in = [ ( n + 6 ) ⁄ 4 ] − 1 (4)

except for the zeroth order orthotide, when in = 0. Finally, recall that the expressions

in Eq. 3 apply to the tidal species for which the expressions a ( t ) and b ( t ) are being

evaluated, so that the total height will be the sum of the heights over all the tidal

species.

2.3. The Adopted Response Model

While Eq. 3 gives the general form for the ocean tide height for each species, the

model adopted in this work was limited to the first three significant orders. In this

case, for each species, the tide height is given by

ζ ( φ , λ ; t ) =
n : even
Σ
4

[ un ( φ , λ ) Pn ( t ) + vn ( φ , λ ) Qn ( t ) ] (5)

where the orthotides are computed as

P 0 = U 0,0 a ( t ) , Q 0 = U 0,0 b ( t ) (6a)

P 2 = U 2,0 a ( t ) + U 2,1 a 1
+ ( t ) , (6b)

Q 2 = U 2,0 b ( t ) + U 2,1 b 1
+ ( t )

and

P 4 = U 4,0 a ( t ) + U 4,1 a 1
+ ( t ) + V 4,1 b 1

− ( t ) , (6c)

Q 4 = U 4,0 b ( t ) + U 4,1 b 1
+ ( t ) − V 4,1 a 1

− ( t )

The coefficients Ui ,j and Vi ,j were taken from Groves and Reynolds (1975), and the

non-zero values are tabulated here in Table 1. Note that for each geographic location,
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six orthoweights, denoted by ui and vi for i = 0 , 2 , 4 are to be estimated for each

species from the data.

Table 1: Values of the orthotide coefficients, from Groves and Reynolds (1975).
Units are cm−1.

_ _______________________________________________________________________

Symbol Diurnal Species Semi-diurnal Species
_ _______________________________________________________________________

U 0,0 0.0298 0.0200
U 2,0 0.1408 0.0905
U 2,1 -0.0805 -0.0638
U 4,0 0.6002 0.3476
U 4,1 -0.3025 -0.1645
V 4,1 0.1517 0.0923_ _______________________________________________________________________ 




















































The expression for the tide height for each species can also be set explicitly in

the form of a discrete convolution between the time dependent part and the other fac-

tors. First we note that if

zi ( φ , λ ) ≡ ui ( φ , λ ) − i vi ( φ , λ ) (7a)

and

Si ( t ) = Pi ( t ) + i Qi ( t ) (7b)

then for each species at a given location,

ζ ( φ , λ ; t ) = Re . [
i : even
Σ
4

zi ( φ , λ ) Si ( t ) ] (8)

where Re [ . ] denotes the real part of the complex argument. Furthermore, we have

P 0 + i Q 0 = U 0,0 c ( t ) (9a)

P 2 + i Q 2 = U 2,0 c ( t ) + U 2,1 [ c ( t + ∆ t ) + c ( t − ∆ t ) ] (9b)

and

P 4 + i Q 4 = U 4,0 c ( t ) + ( U 4,1 − i V 4,1 ) c ( t + ∆ t )

+ ( U 4,1 + i V 4,1 ) c ( t − ∆ t ) (9c)
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Factoring out the time dependent part, we can reset the tide height as

ζ ( φ , λ ; t ) = Re . [
s = −1
Σ
1

ws ( φ , λ ) c ( t + s ∆ t ) ] (10)

where

w 0 = U 0,0 z 0 + U 2,0 z 2 + U 4,0 z 4 (11a)

w 1 = U 2,1 z 2 + ( U 4,1 − i V 4,1 ) z 4 (11b)

w −1 = U 2,1 z 2 + ( U 4,1 + i V 4,1 ) z 4 (11c)

The expressions in Eqs. 10 and 11 show that the tide height is being written as a

one-step convolution between the tide generating potential and the weights. The tidal

admittance, therefore, is a one term sinusoid over the frequency band-width determined

by the time lag ∆ t .

Since the time dependent part at frequency k has been written as (Eq. 2)

ck ( t ) = Hk e− i (Θk + χk ) (12)

we note that for each frequency, the tide height could have been written as

ζk ( φ , λ ; t ) = Re . [ Hk e− i (Θk + χk )

s = −1
Σ
1

ws ( φ , λ ) e− i Θ
.

k s ∆ t ] (13)

so that, by definition, the complex admittance at frequency k becomes

Zk = Xk + i Yk =
s = −1
Σ
1

ws ( φ , λ ) e− i Θ
.

k s ∆ t (14)

Separating out explicitly the real and imaginary parts, we have

Xk = U 0,0 u 0 + U 2,0 u 2 + U 4,0 u 4 (15a)

+ 2 ( U 2,1 u 2 + U 4,1 u 4 ) cos Θ
.

k ∆ t

+ 2 V 4,1 u 4 sin Θ
.

k ∆ t (15a)

Yk = U 0,0 v 0 + U 2,0 v 2 + U 4,0 v 4

+ 2 ( U 2,1 v 2 + U 4,1 v 4 ) cos Θ
.

k ∆ t

+ 2 V 4,1 v 4 sin Θ
.

k ∆ t (15b)
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As a last step, the real and imaginary parts of the admittance may be converted to

the equivalent in-phase and quadrature amplitudes of the tide height. Defining the

Greenwich phase (Cartwright and Ray 1991) for each tide by

σk = Θk + χk (16)

we write the tide height at each frequency as

ζk ( φ , λ ; t ) = H 1 ( φ , λ ) cosσk + H 2 ( φ , λ ) sinσk (17)

then

H 1 = ( − 1 )m Hk Xk ( φ , λ ) (18a)

H 2 = − ( − 1 )m Hk Yk ( φ , λ ) (18a)

where m is, respectively, 0, 1 and 2 for the Long-period, Diurnal and Semi-diurnal

species.

Note that the tide height for each species, whether modeled as in Eq. 5, or as in

Eq. 10, requires six parameters. Obviously, the advantage in using the model of Eq. 5

is the numerical stability that follows from the orthotides. Finally, it is pointed out

that the model in Eq. 5 is applicable equally to either the bottom relative tide, or to

the elastic ocean tide.
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3. THE REFERENCE TIDE MODEL

From past experience, it has been observed that the altimeter data from T/P altim-

eter, on its own, is not sufficient to provide good global ocean tide models for two rea-

sons. First, the 66 degree inclination of the TOPEX satellite orbit causes large data

gaps at the higher latitudes, making such models non-global. Second, the 2.8 degree

nominal ground track separation at the equator reduces the possible resolution of such

models, leading to ill-defined ocean tide values within a few hundred kilometers of the

coastline.

In an effort to avoid the lack of fine resolution inherent in the T/P satellite cover-

age, while taking advantage of the high accuracy of the T/P measurements, it was

decided to use the T/P altimeter data to make corrections to a high resolution global

ocean tide model. For this purpose, the Grenoble FES94.1 hydrodynamical model (Le

Provost, 1994) was chosen as the reference. This model is a high resolution harmonic

model, obtained by solving the Laplace Tidal Equations using finite element tech-

niques. Maps of global ocean tide height amplitudes are given at the

Q 1 , O 1 , P 1 , K 1 frequencies in the Diurnal tidal band, and the N 2 , M 2 , S 2 , K 2 fre-

quencies in the Semi-diurnal bands. The solution is also nominally provided at 5 other

frequencies in the Diurnal and Semi-diurnal bands, but these were not used in our pro-

cedure as the heights at these frequencies were obtained by interpolating from a linear

admittance model imposed upon the eight frequencies listed previously.

While the maps of the Diurnal ocean tides from the Grenoble FES94.1 model

were used as provided, Anderson’s adjustments to the Grenoble model (Anderson,

1995) were used in the Semi-diurnal tidal band. These latter corrections use the data

from the T/P altimeter to correct rather large errors in principally the amplitudes of the

M 2 harmonic in the FES94.1 model. The dataset was completed in the Diurnal and

Semi-diurnal bands by using Canceil et al. (1995) model for the tides in the Mediter-

ranean.

This reference model provides global maps of the in-phase and quadrature ampli-

tudes of the bottom relative ocean tide height at 8 Diurnal and Semi-diurnal frequen-

cies at half degree grid resolutions. The first step was to convert these to maps of the

elastic ocean tide, using the last expression in Eq. 1.
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Once the maps of the elastic ocean tides were obtained, a set of reference ortho-

weights were computed from these maps. The relationship between the in-phase and

quadrature amplitudes at each frequency and the corresponding orthoweights for that

species are as given in Eqs. 18. Note that the information in each species is available

at 4 distinct frequencies. With the in-phase and quadrature components of each tide,

this provides 8 pieces of information from which 6 parameters of the orthoweights

were estimated for each species.

3.1. The Reference Load Tide

In order to convert the bottom relative FES94.1 reference model to the reference

elastic ocean tide, an ocean tide loading correction had to be applied. The load tide

corrections were derived from a previous T/P based ocean tide model CSR 2.0 (Eanes

and Bettadpur, 1994) using the harmonic method.

Note that the ocean tide height is the product of space dependent orthoweights

and the time dependent arguments of the tide generating potential. In the response

method, the space dependent orthoweights are the same for all frequencies in the same

tidal species. Thus the spherical harmonic decomposition of the tide height at each

frequency can be computed directly from the spherical harmonic decomposition of the

orthoweights for that tidal species. The harmonic method of load tide computation

(Ray and Sanchez, 1989) is, in essence, applied directly in the orthoweights domain.

The procedure adopted in computing the reference ocean load tide was as follows.

A spherical harmonic decomposition of equi-angular gridded maps of the orthoweights

of the CSR 2.0 elastic ocean tide model was obtained using fast Fourier transform

techniques (Kim 1995). These coefficients were then scaled with the appropriate load

Love numbers kn ′. The scale factor for the conversion of harmonics at each degree

from elastic ocean tide to the load tide was

βnm =
1 + αnm

αnm_ _______ (19a)

αnm = 3
ρe

ρw_ ___
( 2 n + 1 )

hn ′_ ________ (19b)

where ρw is the density of sea water at 1.025 g/cc, and ρe is the mean solid Earth

density at 5.515 g/cc. The Love numbers were obtained by interpolating between the
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values tabulated by Farrell (1972). Orthoweights of the load tide for each species

were then computed by fast spherical harmonic synthesis. Finally, the addition of the

fit orthoweights from the FES94.1 model and the computed load orthoweights from the

reference load tide model give the reference orthoweights of the elastic ocean tide

model.
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4. DATA PRE-PROCESSING AND CORRECTIONS

The T/P altimeter provides high accuracy measurements of the height of the satel-

lite over the instantaneous ocean surface. The TOPEX satellite is in an exact repeat

orbit around the Earth, so that the global oceans are sampled once every 9.91 days,

with the misclosure between the successive repeat track maintained at less than 1 km.

The nominal ground track separation at the equator is approximately 2.8 degrees and

the measurements provide coverage of the globe between maximum north and south

latitudes of 66 degrees.

The altimeter data from each repeat cycle is provided in the form of the Geophy-

sical Data Records (GDR) (Callahan, 1993) by the Jet Propulsion Laboratory (JPL).

The GDR contain the height of the ocean surface above the standard International

Reference Ellipsoid. These heights are computed by subtracting the corrected (for sen-

sor, EM-Bias, Ionosphere and Wet/Dry Troposphere effects) altimeter range from the

height of the TOPEX satellite above the reference ellipsoid. Also provided in the

GDR are the applicable instrument and media corrections, the satellite height over the

reference ellipsoid, as well as the suggested (though not applied) geophysical informa-

tion for the ocean, elastic, load and pole tides, the geoid height and the mean sea sur-

face.

4.1. The Measurement

We first summarize the computation of the measurement residuals used to correct

the reference elastic ocean tide model. If Yssh denotes the height above the ellipsoid

of the instantaneous sea surface as measured by the T/P altimeter, then the residual sea

surface height yobs from which the elastic ocean tides are to be estimated are given by

yobs = Yssh − ( Ymss + Yb + Yi ) − Yr (20)

where

Yssh : is the sea surface height obtained by differencing the satellite height and the

corrected altimeter measurement.

Ymss :is the mean sea surface height, which is the sum of the geoidal height and the

long period average of the quasi-static mean sea surface topography.
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Yb : denote the body and pole tides.

Yi : are the Inverted Barometer (IB) corrections.

Yr : is the reference elastic ocean tide model as described earlier in the last section.

4.2. Pre-processing Outline

The altimeter measurement residuals are computed in two steps. In the first step,

the high rate (1 Hz) altimeter data from the GDR are verified, edited, smoothed and

re-formatted into 10 second normal points. The altimeter measurements are re-

synthesized in this stage by adding together the corrected sea surface heights and the

POE orbits provided on the GDR. A high frequency component of the mean sea sur-

face (above harmonic degree 70, up to degree 360) is removed from the 1 Hz data

before being reduced to 0.1 Hz normal points. The corrections significant for model-

ing of ocean tides during this stage include the Wet/Dry tropospheric refraction correc-

tions included in the GDR.

In the next step, the altimeter normal points, along with the associated crossover

height differences are processed in the University of Texas Orbit Processor software

UTOPIA. The orbit for TOPEX is determined almost entirely from the tracking data,

an EM-Bias correction is estimated from only the crossover height differences, and an

altimeter bias is estimated from the altimeter normal point measurements. Also at this

stage, the long wavelength mean sea surface correction is computed from the sum of

the degree and order 70 expansion of the JGM-3 geopotential model and a long term

mean quasi-static sea surface topography model (Tapley et al., 1994). An IB correc-

tion is also applied to the altimeter normal points at this stage. These computations,

along with the suggested body and pole tide model values included in the GDR, are

then used to compute the initial altimeter normal point residuals. Finally, the differ-

ence of these initial residuals with respect to the previously discussed reference ocean

tide models provides the final residual measurement from which corrections to the

ocean tide models are estimated.

In the following sub-sections, we discuss some of the important corrections men-

tioned in the previous paragraphs, and their significance for the modeling of ocean

tides.
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4.3. The TOPEX Orbit

The sea surface heights in the GDR are provided with respect to the

NASA/GSFC POE. For this project, the sea surface heights were corrected to be with

respect to the later and more accurate re-processed TOPEX orbits computed at

UT/CSR. The new TOPEX orbits were computed with the updated geopotential model

JGM3 which includes geopotential information from the SLR/DORIS tracking of the

TOPEX satellite. More importantly, however, the orbits were computed with updated

background ocean tide force model as compared to the original release POE.

In Bettadpur and Eanes (1994), it was shown that, much like the static geopoten-

tial, the radial orbit perturbations due to ocean tides were coherent with the tide height

itself at each geographical location. The altimeter measurement being a radial distance

measurements, the radial position errors in the orbit due to mismodeled ocean tides

were inseparable from the altimeter measurement of the ocean tides. In fact, much of

the differences between the first generation ocean tide models from T/P altimeter data

(Eanes, 1994) and the older Geosat based C&R91 model were shown to be due to the

inadequate modeling of the ocean tidal accelerations on the Geosat satellite (Bettadpur

and Eanes, 1994).

While the long period, resonant effects of the mismodeled ocean tides could be

adjusted into the estimates of the empirical acceleration parameters during the orbit

determination process, it was shown (ibid.) that the non-resonant radial orbit errors,

while retaining the same coherence with the ocean tides, could not be corrected by the

same methods. The older TOPEX satellite orbits, including the earlier release POE

placed on the GDR, were computed with background ocean tide force models based

upon the NSWC (Schwiderski, 1983) ocean tide heights. A comparison between the

radial orbital effects of these and the newer T/P based models (Eanes, 1994) suggests

that the earlier TOPEX orbits were in error up to 10 mm rms due to the errors of

omission and commission in the earlier ocean tide force models. The principal effects,

as might be expected were from the M 2 harmonic, ranging up to 5 mm rms.

In the computation of the new TOPEX orbits, the background model was updated

to use the preliminary T/P based ocean tide heights from the CSR 1.6 (Eanes 1994)

model. Harmonics of the ocean tide height up to degree and order 20 for the principal

8 constituents Q 1 , O 1 , P 1 , K 1 and N 2 , M 2 , S 2 , K 2 were included in the background
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model. Also included were complete degree and order 20 expansion of the Mm and

Mf tides from the NSWC model. It is expected that the rms radial orbit errors across

all constituents does not exceed 5 mm in the new TOPEX orbits.

4.4. Other Corrections

As has been pointed out earlier, the body tides in the Diurnal and Semi-diurnal

bands can be modeled to a high accuracy, so that we have chosen to treat body tides

as corrections to be applied to the data. The only uncertainty in the modeling of the

body tides is in the adopted values of h 2 Love number. The body tide corrections

used here were the same as provided on the GDR. The deformation of the solid Earth

at each location was computed from a harmonic model.

The pole tide, having variability at annual and Chandler Wobble periods (14

months) does not significantly affect the models of the short period, Diurnal and

Semi-diurnal tides. Corrections for the pole tide were used as provided on the GDR.

All other corrections, including the Wet/Dry Tropospheric and IB corrections,

were based on the TOPEX/POSEIDON GDR models (Callahan, 1993).
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5. OCEAN TIDE ESTIMATION

Having discussed the theoretical model for the ocean tides, as well as the the

corrections applied to the data, we now describe the parametrization and the least

squares solution for the ocean tides from the T/P altimeter data.

5.1. The Data Distribution

The altimeter residuals, as described in the last section, were computed for the

repeat cycles 1 through 89. The data from cycle 79 was not included because the

POSEIDON altimeter data was not yet available. This dataset contains 10 second

altimeter residual normal points for 872 days, or 2.4 years. Data from both TOPEX as

well as the POSEIDON altimeter were included.

The global oceans between 66 degree North and 66 degree South, the region

covered by the T/P satellite ground track, was divided into equi-angular grids of 3

degree by 3 degree in latitude and longitude. Note that with 3 degree square grids

between 66 degree latitude bounds, n ranges from 1 through 5280. All the data were

assigned to the appropriate bin depending upon the latitude and longitude of the meas-

urement normal point. Reference point for each bin was taken to be the mid-point of

the latitude and longitude limits for each bin.

5.2. The Model

Let φi and λi denote the latitude and longitude of each measurement, made at

epoch ti . Further let n ( i , j ) denote the latitude and longitude dependent bin number

for that data point. Further, let φn and λn denote the bin reference latitude and longi-
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tude. Within each bin, the residual normal point was modeled as follows.

yobs ( φi , λi ; ti ) = bn
0 + bn

φ ( φi − φn ) + bn
λ ( λi − λn )

+ bn
φφ ( φi − φn )2 + bn

φλ ( φi − φn ) ( λi − λn ) + bn
λλ ( λi − λn )2

+ Cn
a cos Aa ( ti ) + Sn

a sin Aa ( ti ) +

+ Cn
sa cos 2 Aa ( ti ) + Sn

sa sin 2 Aa ( ti ) +

+ Cn
1 cos A 1 ( ti ) + Sn

1 sin A 1 ( ti ) +

+
k = −1
Σ
1

[ un ,k
l a l ( ti + k ∆ t ) + vn ,k

l b l ( ti + k ∆ t ) ]

+
k : even
Σ
4

[ un ,k
d Pk

d ( ti ) + vn ,k
d Qk

d ( ti ) ]

+
k : even
Σ
4

[ un ,k
s Pk

s ( ti ) + vn ,k
s Qk

s ( ti ) ] (22)

The first line in Eq. 22 shows that a constant bias and mean sea surface slopes in

the latitudinal and longitudinal directions were solved for each bin. The second line

shows the model for the mean sea surface curvatures in the East, North and the East-

North directions.

The next three lines shows the model for constant amplitude variations related to

the Solar effects. The third and the fourth lines correspond to annual and semi-annual

variations in the sea surface height, where

Aa ( ti ) = 2 π ( Ti − 48988 ) ⁄ 365.25 (23a)

and Ti is the modified Julian date of the epoch of measurement, and 48988 refers to

the MJD of Jan 1, 0h UTC. Inclusion of these parameters in model ensures that the

constituents in the Diurnal and Semi-diurnal bands which have long period aliases due

to T/P ocean sampling are not corrupted by the largely seasonal variations at the

annual and semi-annual frequencies. Further, the fifth line corresponds to the exactly

once per solar day variations, so that

A 1 ( ti ) = 2 π mod ( Ti , 1 ) (23b)

These parameters corresponds to the solution for an ocean tide harmonic at the S 1 fre-

quency. Since the sea surface height variability at this frequency is driven by both
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ocean tides as well as Solar heating variations, it is expected that the simultaneous

solution for this harmonic along with the orthoweights for the entire Diurnal species

will help separate the purely ocean tidal and Solar variations in the sea surface height.

The sixth line shows the parametrization of the long period tides. As can be seen

on comparison with form of tide heights in Eq. 10, the long period species have been

modeled with the conventional tidal response weights. The use of 48 hrs for the value

of time lag implies that the six bin parameters un ,k
l and vn ,k

l of the long period band

response weights model the entire species, so that there is some redundance with the

annual and semi-annual amplitudes described in the previous paragraph. This redun-

dant parametrization is expected to help improve the models of long period ocean tides

particularly at Mm and Mf frequencies.

The seventh and the eight lines show the parametrization of Diurnal and Semi-

diurnal orthoweights, distinguished by the appropriate superscripts. These expressions

are comparable to the Eqs. 5-6. The evaluation of the time dependent tidal arguments

a ( t ) and b ( t ) for each species was carried out using the harmonic method, as writ-

ten in Eq. 2b. The largest 97 amplitudes from the Cartwright and Edden (1973) har-

monic decomposition of the tide generating potential were selected for evaluation of

these functions. Of these 97, the Long-period band contained 20 constituents, the

Diurnal band contained 44, and the Semi-diurnal band contained 33. The amplitudes

Hk and the Doodson-Warburg phase factor χk used in the evaluations are available on

anonymous ftp. The tidal arguments in Eq. 2c were evaluated as described in

McCarthy (1992), using arguments from Brown’s Lunar Theory and Newcomb’s

theory for the Sun.

5.3. The Solution

As can be seen from Eq. 22, for each 3 degree bin, 20 parameters were solved

from the altimeter normal point residuals. The partial derivatives of the observations

with respect to each of the 20 parameters were accumulated into a 20 by 20 square

linear system using the square-root-free Givens’ rotations, so that

Un x̂n = zn , P̂n = ( Un
T Dn Un )−1 (24)

where x̂n denotes the solution for the 20 parameters of the bin number n , Un is a unit

upper triangular matrix, Dn is a diagonal matrix, and P̂n is the a posteriori state error



- 21 -

covariance matrix.

For each bin, the pre-fit and post-fit altimeter normal point residual statistics, the

linear predicted rms from the least squares solution, the estimate vector and the full

covariance matrix were saved. Note finally that for the Diurnal and Semi-diurnal

species, these solutions are to be regarded as corrections to the reference FES94.1 elas-

tic ocean tide model.

5.4. The Smoothed Solution

Upon a visual inspection of the orthoweights of the Diurnal and Semi-diurnal

ocean tides, it is easily seen that there is high frequency variability in the ocean tide

orthoweights. The raw solutions must therefore be smoothed, as there is no reason to

believe that the ocean tides are not smooth in the open oceans.

The smoothing of the raw elastic ocean tide corrections in these two species was

carried out using a two-dimensional Gaussian smoother. This smoother had a Full-

Width, Half-Maximum (FWHM) of 7 degrees.

Finally, the smoothed solution for the Diurnal and Semi-diurnal species was out-

put on the same half degree grid as the orthoweights of the reference elastic ocean tide

model. The sum of the reference model and the smoothed corrections provided the

final elastic ocean tide model for the two species.

5.5. Bottom Relative Ocean Tide : CSR 3.0

The conversion from the elastic ocean tide to bottom-relative ocean tides requires

the subtraction of ocean load tides, as indicated in Eq. 1. Using the same procedure as

described Section 3.1 on the Reference Load Tide, the spherical harmonic decomposi-

tion of the orthoweights of the estimated elastic ocean tide were directly written as the

sum of spherical harmonic decompositions of the load tide orthoweights and the

bottom-relative tide orthoweights. As before, the load Love numbers were interpolated

from the values tabulated by Farrell (1972). The scale factors in Eqs. 19 were applied

to the decomposition of the elastic ocean tide in order to obtain the decomposition of

the load tide. The load tide was then synthesized on the same grid as the estimated

elastic ocean tide. Note that the load tide is now being derived from the estimated

elastic ocean tide unlike the reference load tide model.
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The difference between the estimated elastic ocean tide and the load tides is then

the true bottom-relative ocean tide. The resulting half degree grid global maps of the

orthoweights of the bottom-relative ocean tides in the Diurnal and Semi-diurnal

species were called the Model CSR 3.0
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6. MODEL CSR 3.0 : ASSESSMENTS

Additional information and comparison with various other ocean tide models is

given in Shum et al. (1997).
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